Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth Studies on Quaternary AlInGaN Layers for HEMT Application

Identifieur interne : 001B40 ( Main/Repository ); précédent : 001B39; suivant : 001B41

Growth Studies on Quaternary AlInGaN Layers for HEMT Application

Auteurs : RBID : Pascal:12-0298672

Descripteurs français

English descriptors

Abstract

Quaternary barrier layers for GaN-based high-electron-mobility transistors (HEMT) have recently been a focus of interest because of the possible lattice-matched growth to GaN. This results in a reduction of strain-related defects, while having the option of adjusting the bandgap separately. A further benefit of the quaternary approach is the possibility to achieve high polarization and high carrier mobility simultaneously. This may improve the performance of such devices beyond what is possible with ternary barrier layers. In this work, we report on growth and characterization of AlxInyGa1-x-yN barrier layers within the range of 16% to 56% Al, 2% to 45% In, and 20% to 82% Ga deposited on conventional GaN buffer layers on sapphire. We present an effective way to change the composition of quaternary layers and discuss the influence of tensile and compressive strain on structural and electrical properties. From high-resolution x-ray diffraction (HRXRD), Rutherford backscattering spectroscopy (RBS), and wavelength-dispersive x-ray spectroscopy (WDX), we determined the compositions and strain states of the AlInGaN layers. The bandgaps (Eg) were obtained by spectroscopic ellipsometry (SE). Hall and van der Pauw measurements on thin heterostructure layers yielded high mobilities in excess of 1550 cm2/V s and 5350 cm2/V s at room temperature and 77 K, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0298672

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth Studies on Quaternary AlInGaN Layers for HEMT Application</title>
<author>
<name sortKey="Reuters, Benjamin" uniqKey="Reuters B">Benjamin Reuters</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wille, A" uniqKey="Wille A">A. Wille</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holl Nder, B" uniqKey="Holl Nder B">B. Holl Nder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Forschungszentrum Jülich GmbH, PGI9-IT</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>PGI9-IT</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakalauskas, E" uniqKey="Sakalauskas E">E. Sakalauskas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institut fur Physik, Technische Universitat Ilmenau, PF 100565</s1>
<s2>98684 Ilmenau</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>98684 Ilmenau</wicri:noRegion>
<wicri:noRegion>100565</wicri:noRegion>
<wicri:noRegion>98684 Ilmenau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ketteniss, N" uniqKey="Ketteniss N">N. Ketteniss</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mauder, C" uniqKey="Mauder C">C. Mauder</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldhahn, R" uniqKey="Goldhahn R">R. Goldhahn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institut fur Physik, Technische Universitat Ilmenau, PF 100565</s1>
<s2>98684 Ilmenau</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>98684 Ilmenau</wicri:noRegion>
<wicri:noRegion>100565</wicri:noRegion>
<wicri:noRegion>98684 Ilmenau</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="05">
<s1>Institut fur Experimentelle Physik (IEP), Universitätsplatz 2</s1>
<s2>39106 Magdeburg</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Saxe-Anhalt</region>
<settlement type="city">Magdebourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heuken, M" uniqKey="Heuken M">M. Heuken</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
<wicri:noRegion>Kaiserstr. 98</wicri:noRegion>
<wicri:noRegion>52134 Herzogenrath</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kalisch, H" uniqKey="Kalisch H">H. Kalisch</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vescan, A" uniqKey="Vescan A">A. Vescan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich</wicri:noRegion>
<wicri:noRegion>JARA-FIT</wicri:noRegion>
<wicri:noRegion>Jülich</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0298672</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0298672 INIST</idno>
<idno type="RBID">Pascal:12-0298672</idno>
<idno type="wicri:Area/Main/Corpus">001A98</idno>
<idno type="wicri:Area/Main/Repository">001B40</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium nitride</term>
<term>Barrier layer</term>
<term>Buffer layer</term>
<term>Carrier mobility</term>
<term>Compressive stress</term>
<term>Defects</term>
<term>Dispersive spectrometry</term>
<term>Electrical properties</term>
<term>Energy gap</term>
<term>Gallium</term>
<term>Gallium nitride</term>
<term>Growth mechanism</term>
<term>Hall effect</term>
<term>Heterostructures</term>
<term>High electron mobility transistors</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium nitride</term>
<term>Mismatch lattice</term>
<term>Polarization</term>
<term>RBS</term>
<term>Spectroscopic ellipsometry</term>
<term>Strained layer</term>
<term>Tensile stress</term>
<term>Thin films</term>
<term>X-ray spectra</term>
<term>XRD</term>
<term>Yttrium nitride</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanisme croissance</term>
<term>Transistor mobilité électron élevée</term>
<term>Couche barrière</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Accommodation réseau</term>
<term>Défaut</term>
<term>Bande interdite</term>
<term>Polarisation</term>
<term>Mobilité porteur charge</term>
<term>Couche tampon</term>
<term>Contrainte traction</term>
<term>Contrainte compression</term>
<term>Propriété électrique</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'yttrium</term>
<term>Gallium</term>
<term>Couche mince</term>
<term>Nitrure d'aluminium</term>
<term>Diffraction RX</term>
<term>RBS</term>
<term>Spectrométrie dispersive</term>
<term>Spectre RX</term>
<term>Couche contrainte</term>
<term>Ellipsométrie spectroscopique</term>
<term>Effet Hall</term>
<term>Hétérostructure</term>
<term>Nitrure d'indium</term>
<term>AlInGaN</term>
<term>GaN</term>
<term>Substrat GaN</term>
<term>Substrat saphir</term>
<term>InAlGaN</term>
<term>8530T</term>
<term>8530P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quaternary barrier layers for GaN-based high-electron-mobility transistors (HEMT) have recently been a focus of interest because of the possible lattice-matched growth to GaN. This results in a reduction of strain-related defects, while having the option of adjusting the bandgap separately. A further benefit of the quaternary approach is the possibility to achieve high polarization and high carrier mobility simultaneously. This may improve the performance of such devices beyond what is possible with ternary barrier layers. In this work, we report on growth and characterization of Al
<sub>x</sub>
In
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N barrier layers within the range of 16% to 56% Al, 2% to 45% In, and 20% to 82% Ga deposited on conventional GaN buffer layers on sapphire. We present an effective way to change the composition of quaternary layers and discuss the influence of tensile and compressive strain on structural and electrical properties. From high-resolution x-ray diffraction (HRXRD), Rutherford backscattering spectroscopy (RBS), and wavelength-dispersive x-ray spectroscopy (WDX), we determined the compositions and strain states of the AlInGaN layers. The bandgaps (Eg) were obtained by spectroscopic ellipsometry (SE). Hall and van der Pauw measurements on thin heterostructure layers yielded high mobilities in excess of 1550 cm
<sup>2</sup>
/V s and 5350 cm
<sup>2</sup>
/V s at room temperature and 77 K, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth Studies on Quaternary AlInGaN Layers for HEMT Application</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2011 Electronic Materials Conference</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>REUTERS (Benjamin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WILLE (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOLLÄNDER (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAKALAUSKAS (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KETTENISS (N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MAUDER (C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GOLDHAHN (R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HEUKEN (M.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KALISCH (H.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>VESCAN (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CALDWELL (Joshua)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GOLDMAN (Rachel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>HALL (Doug)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>JURCHESCU (Oana)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>MORAN (Pete)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>XING (Grace)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>CHEN YANG</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>GaN Device Technology, RWTH Aachen University, Sommerfeldstrasse 24</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Forschungszentrum Jülich GmbH, PGI9-IT</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Jülich Aachen Research Alliance, JARA-FIT</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institut fur Physik, Technische Universitat Ilmenau, PF 100565</s1>
<s2>98684 Ilmenau</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut fur Experimentelle Physik (IEP), Universitätsplatz 2</s1>
<s2>39106 Magdeburg</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>AIXTRON SE, Kaiserstr. 98</s1>
<s2>52134 Herzogenrath</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>TMS - The Minerals, Metals & Materials Society</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>905-909</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000505293210170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0298672</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Quaternary barrier layers for GaN-based high-electron-mobility transistors (HEMT) have recently been a focus of interest because of the possible lattice-matched growth to GaN. This results in a reduction of strain-related defects, while having the option of adjusting the bandgap separately. A further benefit of the quaternary approach is the possibility to achieve high polarization and high carrier mobility simultaneously. This may improve the performance of such devices beyond what is possible with ternary barrier layers. In this work, we report on growth and characterization of Al
<sub>x</sub>
In
<sub>y</sub>
Ga
<sub>1-x-y</sub>
N barrier layers within the range of 16% to 56% Al, 2% to 45% In, and 20% to 82% Ga deposited on conventional GaN buffer layers on sapphire. We present an effective way to change the composition of quaternary layers and discuss the influence of tensile and compressive strain on structural and electrical properties. From high-resolution x-ray diffraction (HRXRD), Rutherford backscattering spectroscopy (RBS), and wavelength-dispersive x-ray spectroscopy (WDX), we determined the compositions and strain states of the AlInGaN layers. The bandgaps (Eg) were obtained by spectroscopic ellipsometry (SE). Hall and van der Pauw measurements on thin heterostructure layers yielded high mobilities in excess of 1550 cm
<sup>2</sup>
/V s and 5350 cm
<sup>2</sup>
/V s at room temperature and 77 K, respectively.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transistor mobilité électron élevée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>High electron mobility transistors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche barrière</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Barrier layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Défaut</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Defects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Polarisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Polarization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Contrainte traction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Tensile stress</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Tensión traccíon</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Contrainte compression</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Compressive stress</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tensión compresión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure d'yttrium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Yttrium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Ytrio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Nitrure d'aluminium</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Aluminium nitride</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Aluminio nitruro</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>XRD</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>RBS</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>RBS</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Spectre RX</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>X-ray spectra</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Couche contrainte</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Strained layer</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Capa forzada</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>AlInGaN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Substrat GaN</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Substrat saphir</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>InAlGaN</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>8530T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>8530P</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>226</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Electronic Materials Conference</s1>
<s2>53</s2>
<s3>Santa Barbara, California USA</s3>
<s4>2011-06-22</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001B40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0298672
   |texte=   Growth Studies on Quaternary AlInGaN Layers for HEMT Application
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024